

Software Module MDPP-16-PADC

16 channel VME pulse processor

The software module MDPP-16-PADC provides the functionality of a high resolution peak sensing ADC, which also provides a precise time of the sensed pulse maximum.

MDPP-16 with PADC software module:

• Gain-polarity jumpers

determine: termination, polarity, input range and input configuration (differential / uni polar).

The usual input jumper for PADC are 10V, high Ohmic (1kOhm). But also differential signals and very small signals are possible by selecting a Gain-jumper.

• Low noise variable gain input amplifiers.

The input maximum range can be smoothly adjusted from 10V to 0.5V and beyond (with 10V gain jumpers).

• Amplitude resolution

for 2us FWHM pulses, reaches an rms noise corresponding to a 32 bit ADC.

Temperature stability at gain = 1, reaches 25ppm/°C

• AC-coupled and baseline restored

Offsets of the input signals have no effect. Even at highest rates, the amplitude keeps stable. Conversion of DC voltage is not possible

- **Dead time / rate capability** For input pulse width of more than 400ns there is no additional dead time.
- Two high resolution monitor outputs

for monitoring input signals and integrals of signals.

• Two high resolution trigger inputs

24 ps resolution, start window, add time stamp

- One high resolution trigger output (1.5 ns resolution)
- Installation and update via USB

Software module: "PADC"

Delivers timing and very precise amplitude for signals from a shaping amplifiers. It equally processes Gaussean, triangular or trapezoidal signals.

The timing resolution depends on signal to noise ratio and shaping time. It may get down to a resolution of 70ps rms. The channels can be operated self triggered, or an external trigger signal can open a window of interest.

The following picture shows a schematic representation of the software:

The signal is amplified filtered digitized. Then the pre- differentiation is removed by a deconvolution. Then the signal is integrated with a time constant of about $\frac{1}{4}$ of the FWHW of the signal. This improves the resolution to up to $\frac{1}{32000}$ of the full range.

A timing path detects the exact maximum of the peak, and samples it with highest precision (jitter down to 70ps rms).

Then the amplitude and timing values are filtered by a **window of interest** and stored in a **buffer**.

Short data:

- Amplitude resolution of up to 32 k (15 bit)
- Trigger to channel time resolution of < 70 ps rms, uniform at any delay.
- Channel to channel time resolution of < 70 ps rms, uniform at any delay.

- Trigger input with 24 ps timing resolution
- Can be operated self triggered or externally triggered
- Outputs internal raw trigger with 1.5 ns time resolution

As easy to operate as all mesytec modules and fully data compatible.

Only 4 parameters have to be set:

In Hardware:

Polarity of the signal, set Jumper to correct position

For the PADC firmware 10V, 1 kOhm jumpers are added, to allow to adjust a maximum range

from 0.4V to 10V (by internal gain) without termination. But also the other jumpers can be used.

Register Settings

Signal properties:

- 1. signal width [ns]
- 2. Amplifier Gain (can be set from 1 to 25 in steps of 1%).

Analysis property

3. thresholds

Output Data

Amplitude:

channel 0..15 Amplitude 16 bit. Best achievable resolution: 15 bit (1/32000).

Timing: Difference to window start:

channel 16 to 31 channel time difference (16bit) Chan 32,33 Trigger input 0,1 time diff. (16 bit)

Monitor outputs

(Lemo 2 = mon 0, and Lemo 3 = mon 1)

Switching on the monitor: press pus button "chan", then select a wave form with "Tmon" button. The button "chan" allows to switch through the individual channels.

Wave forms:

Tmon 0,

Yellow: mon0, signal at ADC, Green: trigger output

Tmon 1:

Yellow: mon 0, Signal after deconvolution Green: Trigger output

Tmon 2 :

Yellow: mon0, integrated, baseline restored signal.

Tmon 3: Check noise

Yellow: mon 0, integrated baseline restored signal signal amplified by 32.

MDPP-16 register set, PADC Firmware.

Only registers which are different to RCP and SCP software modules are listed.

Data FIFO, read data at address 0x0000 (access R/W D32, 64)

only even numbers of 32 bit-words will be transmitted. In case of odd number of data words, the last word will be a fill word (= 0).

FIFO size: 48 k - 512 = 48640 words with 32 bit length

Header (4 byte)

2 header signature	2 subheader	4	8 module id	$3 \\ TDC_resolution \\ \rightarrow 0x6042$	3 ADC_resolution → 0x6046	10 number of following data words, including EOE
b01	b00	xxxx	module id	bxxx	bxxx	number of 32 bit data words

Data (4 byte) DATA event

2 data-sig	2	4	2	6	4	12
b00	01	хххх	(x, overflow)	channel number 015	0	Peak amplitude

Data (4 byte) DATA event

2	2	6	6	16
data-sig				
b00	01	XXXXXX	channel number 1631	TDC time difference

Data (4 byte) DATA event

2	2	6	6	16
data-sig				
b00	01	XXXXXX	channel number 32, 33	Trigger time difference T0, T1

Data (4 byte) Extended time stamp

2	2	12	16
data-sig			
b00	10	XXXX XXXX XXXX	16 high bits of time stamp

Data (4 byte), fill dummy (to fill MBLT64 word at odd data number)

2	30
data-sig	
b00	0

End of Event mark (4 byte)

2	30
b11	event counter / time stamp

Registers

	operation mode				
0x6044	output_format	2	RW	3	0 = time + peak amplitude 1 = peak amplitude only 2 = time only (TDC mode)

Channel addressing (select channel which are set)

0x6100	select chan pair	4	RW	8	channel to be modified:
					07 channel pairs;
					0 = chan 0, 1
					1 = chan 2,3
					8 = all channels (set to common values)

Channel settings for pairs of channels, *** After writing a register in this page, 5us wait time is required *****

Address	Parameter				
0x611A	Gain	15	RW	100	100= 1; up to 25000 = 250
0x611C	threshold0	15	RW	255	10xFFFF; example: $0.8% = 0x200;$
0x611E	threshold1	15	RW	255	10xFFFF; for odd channel in pair
0x6124	Signal_width		RW	80	22000 in multiples of 12.5ns
0x6126	BLR	2	RW	2	0= BLR off, 1= strict, 2=soft

How to set channel parameters

Gain: The internal Gain. Input range is Gain jumper range / gain. For example: Gain jumper is 10V, 1kOhm, expected input signal has maximum 4V, so gain has to be set to 2.5, set value = 250;

Signal_width This is the width of the input pulse at half the peak amplitude in multiples of 12.5ns.

Threshold0/1: The threshold parameter can be set separately for the two addressed channels. Foll range is 64k (65535) = 0xFFFF; So a 1% of full range threshold is 65535/100 = 655;

Pulse width: is the full width half maximum value of the shaped input pulse in multiples of 12.5ns. For example: the pulse has a width of 1us, so setting is 1000/12.5 = 80: The value is internally used to calculate the integration time and to set the BLR.

BLR: the base line restorer can be switched off $\rightarrow = 0$. This will degrade resolution, and makes only sense when the signals are very degraded, for example large undershoots.. Settings 2 give a soft response with long time constant, = 1 will restore with shorter time constant. Usually the effect between 1 and 2 will be small.

High precision measurements:

Best temperature stability is with Gain = 1, minor degradation for others. The pulse FWHM is essential to deliver input for BLR and integration. Temperature stability 25E-6 /°C @ gain=1; Differential non linearity TBD (<1%) Integral non linearity TBD (<1E-4)

If precision below 1E-4 in INL is required:

INL corrections should be performed after each power up. (ADCs perform self calibration after each power up)Wait 15 minutes for thermal equilibrium.For highest stability Air condition (stable temperature) is useful.