

VMMR-8 / 16 (Data sheet V00.10)

Hardware features:

VMMR, the VME-receiver module

The VME receiver Module VMMR-8 / 16 has 8 or 16 optical buses. With 16 buses, 8 of them are back on the motherboard.

The module synchronises the front end clocks, receives triggers on the buses and accepts external gates. In specified coincidence cases the events are requested from the buses processed to a common event and store in a large memory. There it is available for VME readout. The event format is very similar to other mesytec modules like MDPP-16. Only the address space for more channels is larger.

The 16 bus module can receive up to 2048 channels. The number of VMMR VME modules in a setup is unlimited.

Optical Bus

POF twin fiber to transmit up to 200 Mbit/s of data. Diameter of light guide = 1 mm, jacket diameter 2.2 mm. LED transmitter/receiver: 650 nm (red).

- Live insertion (can be inserted in a running crate)
- Power consumption: 6.5 W,
 +5 V, 1.2 A
 -12 V, 50 mA

ATTENTION !!

General for VME64X modules:

The locker screws of of the modules must be fixed for operation.

Control input / output

- Differential control inputs:
 - interface any differential signals: ECL, LVDS or LVPECL. They can be individually
 - terminated (110 Ω) via register settings
- NIM inputs:
 - standard NIM, 50 Ω
- NIM output:
 - -0.7 V when terminated with 50 Ω
- mesytec control bus output, shares connector with busy output. +0.7 V terminated

Minimum trigger width for individual inputs is = 10 ns Maximum external reference synchronization clock frequency (sync input): 75 MHz

VMMR-16 register set, Data FIFO, read data at address 0x0000

(access R/W D32, 64)

only even numbers of 32 bit-words will be transmitted. In case of odd number of data words, the last word will be a fill word (= 0).

FIFO size: 64k - 4k words with 32 bit length

Header (4 byte)

	2	2	4	8	4	12
	header signature	subheader		module id		number of following data words, including EOE
Į	b01	b00	b000,trig	module id	0x0	number of 32 bit data words

Data (4 byte) DATA event

2 data-sig	2	4	8	16
b00	10	Bus Number	0x00	Time difference Gate start to bus trigger

Data (4 byte) DATA event

2	2	4	12	12
data-sig				
b00	01	Bus Number	Front end subaddress	ADC value

Data (4 byte) Extended time stamp

2	2	12	16
data-sig			
b00	10	XXXX 1XXX XXXX	16 high bits of time stamp

Data (4 byte), fill dummy (to fill MBLT64 word at odd data number)

2	30
data-sig	
b00	0

End of Event marker (4 byte)

2	30
b11	event counter / time stamp

Registers, Starting at address x6000 (access D16)

Address	Name	Bits	dir	default	Comment
	Address registers				
0x6000	address_source	1	RW	0	0 = from board coder, 1 from address_reg
0x6002	address_reg	16	RW	0	address to override decoder on board
0x6004	module_id	8	RW	0xFF	is part of data header
					If value = FF, the 8 high bits of base address
					are used (always board coder).
0x6006	Fast MBLT	1	W	1	0 = reduce MBLT cycle time to 100ns
0x6008	soft_reset	1	RW		breaks all activities, sets critical parameters
					to default. Wait 200 ms after writing
					this register.
					read: Hardware index: 0x5006
0x600E	firmware_revision	16	R		Example: rev $1.4 = 0x0104$

	IRQ (ROACK)				
0x6010	irq_level	3	RW	0	IRQ priority 17 , $0 = IRQ$ off
0x6012	irq_vector	8	RW	0	IRQ return value
0x6014	irq_test	0	W		initiates an IRQ (for test)
0x6016	irq_reset	0	W		resets IRQ (for test)
0x6018	irq_data_threshold	15	RW	1	Every time the number of 32 bit words in the FIFO exceeds this threshold, an IRQ is emitted. Maximum allowed threshold is "FIFO size".
0x601A	Max_transfer_data	15	RW	1	 Specifies the amount of data read from FIFO before Berr is emitted. Only active for multi event mode 3. Transfer is stopped only after full events. Example: At Max_transfer_data = 1, 1 event per transfer is emitted. Specifies the number of events read from FIFO before Berr is emitted. Active for multi event mode 0xb. Setting the value to 0 allows unlimited transfer.
0x601C	IRQ_source	1	RW	1	IRQ source: 0 = event threshold exceeded 1 = data threshold exceeded
0x601E	irq_event_threshold	15	RW	1	Every time the number of events in the FIFO exceeds this threshold, an IRQ is emitted.

For multi event mode 2 and 3 the IRQ is:

- set when the FIFO fill level gets more than the threshold and is
- withdrawn when IRQ is acknowledged or when the fill level goes below the threshold

<u>Amesytec</u>

VMMR-8 / 16

	MCST CBLT				
0x6020	cblt_mcst_control	8	RW	0	see table
0x6022	cblt_address	8	RW	0xAA	A31A25 CBLT- address
0x6024	mcst_address	8	R	0xBB	A31A25 MCST- address

Bit	Name	Write	Read
7	MCSTENB	Enable MCST No effect	0
6	MCSTDIS	1 Disable MCST 0 No effect	 MCST enabled MCST disabled
5	FIRSTENB	1 Enable first module in a CBLT chain 0 No effect	0
4	FIRSTDIS	1 Disable first module in a CBLT chain 0 No effect	 First module in a CBLT chain Not first module in a CBLT chain
3	LASTENB	1 Enable last module in an CBLT chain 0 No effect	0
2	LASTDIS	1 Disable last module in an CBLT chain 0 No effect	 Last module in a CBLT chain Not last module in a CBLT chain
1	CBLTENB	1 Enable CBLT 0 No effect	0
0	CBLTDIS	1 Disable CBLT 0 No effect	1CBLT enabled0CBLT disabled

CBLT Address Field

A31A24	A23A00
CBLT ADRS	8 high bits, not significant + 16 bit module address space

MCST Address Field

A31A24	A23A00
MCST ADRS	8 high bits, not significant + 16 bit module address space

At BLT32

When an empty module is accessed at address 0, BERR is emitted.

At CBLT

When no module contains data, no data are transmitted. The last module emits BERR.

	FIFO handling						
0x6030	buffer_data_length	16	R		amount of data in FIFC (only fully converted e Units → data_len_form Can be used for single	vents). iat. - and multi ev	
0x6032	data_len_format	2	RW	2	0 = 8 bit, 1 = 16 bit, 2 4 = show number of e The number of 32 bit v If necessary the fill wo For len 0 and 1 the may when number exceeds The FIFO is not affected	vents in FIFO. words is alway ord "0" is adde ax value 0xFFF the 16 bit for	rs even. d. F is shown
0x6034	readout_reset		W		At single event mode (trigger, allow IRQ At multi event = 1 : ch when enough data. All buffer fill level does no threshold at readout. At multievent = 3 : clea	multi event = ecks threshold ows safe oper t go below the	l, sets IRQ ation when e data
0x6036	multi event	4	RW	0	Bit [3]	Bit [2]	Bit [1:0]
					count events not words (reg. 0x601A)	skip berr, send EOB	mode [1:0]
					Allow multi event buffer mode = 0 \rightarrow no (0x6 conversion) mode = 1 \rightarrow yes , unlereset required (0x6034 readout). Don't use for mode = 3 \rightarrow yes but amount of data. With the data words can be specified at the set of the set	034 clears even imited transfe can be writted or CBLT VMMR transfe reg 0x601A th ccified. After w of event mark err. So 0x601A r (Berr after e	ent, allows new r, no readout en after block ers limited e number of ord limits is a terminates = 1 means ach event).
					Berr handling: when Send EOB = bit [31:30 Bit [3]: Compare numb (not words!) with max for Berr condition.] = bx10 inste per of transmit	ted events
0x6038	marking_type	2	RW	0	$\begin{array}{l} 00 \rightarrow \text{event counter} \\ 01 \rightarrow \text{time stamp} \\ 11 \rightarrow \text{extended time st} \end{array}$	amp	
							→ next page

0x603A	start_acq	1	RW	1	$1 \rightarrow$ start accepting triggers If no external trigger logic, which stops the gates when daq is not running, is implemented, this register should be set to 0 before applying the FIFO_reset to get a well defined status. When setting it to 1 again for data acquisition start, the module is in a well defined status.
0x603C	FIFO_reset		W		Initialize FIFO
0x603E	data_ready	1	R		$1 \rightarrow$ data available

	operation mode				
0x6040	bus_ok	16	R		At acquisition start, VMMR evaluates buses if they are connected. Result in binary representa- tion: For example 0b000000000000011, bus0,1 are connected.
0x6042	active_buses	16	RW	0xFFFF	a 1 means bus active, read: activated buses at start_daq
0x6046	Timing resolution (SW-RevX110 and higher)	1	RW	0	Set timing resolution $5ns = 0$; $1ns = 1$. 1ns setting requires MMR mudules with 1ns reso- lution. Trigger input with 1ns res., trigger out 5ns res.
0x604C	Gate_blocking_time	11	RW	0	multiples of 10ns; Gate can be blocked for this time.

	Trigger				
0x6050	win_start	13	RW	0x1000 -32	Unit: 5 ns Start window of interest: 0x0000 start at -20.48 us 0x1FFF start at +20.48 us 0x1000 = 4k, no delay < 4k, window starts before Trigger > 4k, window is delayed
0x6054	win_width	12	RW	64	Unit: 5 ns, max $4k = 20.48$ us
0x6058	ext_trig_source	2	RW	3	trig1 / trig0 to trigger gate
0x605A	trig_source	16	RW	0	this register allows to set any number of individual MMR-Frontends (buses) creating the trigger. Bit 0 corresponds to bus 0, bit 15 to bus 15. A "1" marks the buses as trigger source.
0x605C	out_trigger_source	1	RW	0	 0 = free trigger to trigger output (standard operation) 1 = output triggers which are accepted by window of interest (can be useful when self triggered and MVLC is the only trigger source)
0x605E	trigger_output	8	RW	0x00	If 0x605C = 0 (selects free trigger): Bit 0 corresponds to bus 0, bit 15 to bus 15. A "1" marks the bus as trigger source.

IO 0x6060	Inputs, outputs				
0x6060	ECL3	8	RW	0x00	INPUT
					lower 4 bit: $0 = Off$, $1 = Trig0$ in
					higher 4 bit: 0 = terminated, 1 = unterminated
0x6062	ECL2	8	RW	0x00	INPUT
					lower 4 bit: $0 = Off$, $1 = Sync_in$, $2 = Trig1$ in
					higher 4 bit: 0 = terminated, 1 = unterminated
					when sync is selected also set reg 0x6096 !!
0x6064	ECL1	8	RW	0x00	INPUT
					lower 4 bit: $0 = Off$, $1 = Reset_in$
					higher 4 bit: 0 = terminated, 1 = unterminated
0x6066	ECL0	4	RW	0	OUTPUT
					0 = Off, 4 = Busy,
					8 = data in buffer above threshold 0x6018
					(= Data ready)
					9 = events in buffer above threshold 0x601E
0x6068	NIM3	2	RW	1	INPUT
					$0 = Off, 1 = Trig0_in, 2 = sync_in$
					when sync is selected also set reg 0x6096 !!
0x606A	NIM2	2	RW	1	0 = off, 1 = Trig1_in, 2 = timestamp_reset
0x606C	NIM1	4	XX	X	1 = trig_out, 5= NIM Trigger group 1 out
0x606E	NIM0				0 = Off, 1 = Cbus,
					4 = Busy_out (= FIFO full or ACQ stopped)
					5= NIM Trigger group 0 out
					8 = data in buffer above threshold 0x6018
					9 = events in buffer above threshold 0x601E

The test pulses are generated in MMR frontends and are injected at the inputs of the preamps. They are initiated by a ping signal on the buses which is centrally created by the VMMR with a frequency of 6kHz. So pulses are created absolutely synchronous in all connected MMRs.

When "only triggers" is set, the MMRs start conversion without injecting a pulser signal. So only noise is converted.

0x6070	Test pulser				
0x6070	pulser_status;	1	RW	0	0 = Off, 1 = Pulser on (6kHz),
					$(3 = \text{send triggers only} \rightarrow \text{read pedestals})$
0x6072	pulser_amplitude	8	RW	100	maximum amplitude: 0xFF = 255

IO selection Overview

The numbers in the table can be written to the corresponding register. For example: ECL2 should input the trigger 1: write 2 to 0x6062.

ю	default	TR0	TR1	SYN	RES	TRout	Busy	T1_out T0_out	Rdy data	Rdy event	Cbus
ECL3	0	1									
ECL2	0		2	1							
ECL1	0				1						
ECL0	0						4		8	9	
NIM3	1	1		2							
NIM2	1		1		2						
NIM1	1					1		5			
NIM0	1						4	5	8	9	1

Selection of 0 always means it is unused or "Off"

Description

T1_out/T0_out: trigger from group selected by reg 631A for NIM0, by reg 631C for NIM1

- TR0 = Trigger 0 input
- TR1 = Trigger 1 input
- SYN = external Frequency to synchronize event time stamp
- RES = reset for event time stamp
- TRout = trigger output
- Busy = module not ready to take more triggers
- Rdy dat = data in buffer above threshold register "0x6018"
- Rdy eve = events in buffer above threshold register "0x601E"
- Cbus = control bus to control external mesytec modules (MHV-4, MPRB-32...)

Mesytec control bus:

MRC 0x6080	Module RC				
0x6080	rc_busno	2	RW	0	0 is external bus, comes out at busy output
0x6082	rc_modnum	4	RW	0	015 (module ID set with hex coder at external module)
0x6084	rc_opcode	7	RW		$3 = RC_on, 4 = RC_off, 6 = read_id,$ 16 = write_data, 18 = read_data
0x6086	rc_adr	8	RW		module internal address, see box below
0x6088	rc_dat	16	RW		data (send or receive), write starts sending
0x608A	send return status	4	R		bit0 = active bit1 = address collision bit2 = no response from bus (no valid address)

Send time is 400 us. Wait that fixed time before reading response or sending new data. Also polling at 0x608A for bit0 = 0 is possible

The Trigger0-LED shows data traffic on the bus, the Trigger1-LED shows bus errors (i.e. non terminated lines)

Example for controlling external modules with mesytec RC-bus

Initialize and read out a MCFD-16 CFD- module. MCFD-16 ID-coder set to 7 Bus line must be terminated at the far end.

Activate VMMR control bus at busy line

Write(16) addr 0x6074 data 1

Get Module ID-Code (= Type of module = 26 for MCFD-16)

Write(16)	addr 0x6082 data 7	// address module 7
Write(16)	addr 0x6084 data 6	// send code "read IDC"
Write(16)	addr 0x6088 data 0	// initialize send request. Data has no effect

Wait loop: Read(16) 0x608A and compare bit0 to get 0. Then evaluate other bits for error status

Read(16)	addr 0x6088 data 40	// at ID readout the bit 0 shows the module RC status
		// (1 is on). Bit 17 show the IDC
		$// \rightarrow$ interpretation: Module off, IDC = 20

Set threshold for channel 0 to 10

Write(16)	addr 0x6082 data 7	// address module 7
Write(16)	addr 0x6084 data 16	// code "write_data"
Write(16)	addr 0x6086 data 0	// address module memory location 1
Write(16)	addr 0x6088 data 10	// start send. Data to send

Wait loop: Read(16) 0x608A and compare bit0 to get 0. Then evaluate other bits for error status.

Optional the read back data is available Read(16) addr 0x6088 data 10 // read back written data for control

Read threshold of channel 0

Write(16)	addr 0x6082 data 7	// address module 7
Write(16)	addr 0x6084 data 18	// code "read_data"
Write(16)	addr 0x6086 data 0	// address module memory location 1
Write(16)	addr 0x6088 data 0	// send read request. Data has no effect

Wait loop: Read(16) 0x608A and compare bit0 to get 0. Then evaluate other bits for error status

Read(16) addr 0x6088 data 10 // read out data, "10" returned

Activate RC in module

All set data will get active. This can also be done before setting the values.

Write(16)	addr 0x6082 data 7	// address module 7
Write(16)	addr 0x6084 data 3	// send code "RC_on"
Write(16)	addr 0x6088 data 0	// initialize send request. Data has no effect

Deactivate VMMR-16 control bus at busy line

Write(16) addr 0x606E data 0 // busy output used as busy

CTRA

Time stamp counters, event counters

All counters have to be read in the order: low word then high word !!!

They are latched at low word read. The event counter counts events which are written to the buffer.

CTRA 0x6090	counters A				
0x6090	Reset_ctr_ab	2	RW		b0001 resets all counters in CTRA, b0010 resets all counters in CTRB, b1100 allows single shot reset for CTRA with first edge of external reset signal. the bit bx1xx is reset with this first edge Reset of "counters A" will also reset the global 46 bit TDC time stamp
0x6092	evctr_lo	16	R	0	event counter low value
0x6094	evctr_hi	16	R	0	event counter high value
0x6096	ts_sources	5	RW	b00	bit0: frequency source (VME = 0, external = 1) bit1: external reset enable = 1 bit4: CTRB "time" counts trigger outputs (= free triggers, selected by 0x605E)
0x6098	ts_divisor	16	RW	1	time stamp = time / (ts_divisor) 0 means division by 65536
0x609C	ts_counter_lo	16	R		Time low value
0x609E	ts_counter_hi	16	R		Time high value

CTRB

Counters are latched when VME is reading the low word Output value is divided by 40 to give a 1 us time basis

CTRB 0x60A0	counters B				
0x60A8	time_0	16	R		Time [1 us] (48 bit) RCP: alternately: free triggers, selected by 0x6096 bit4, and 0x605E
0x60AA	time_1	16	R		
0x60AC	time_2	16	R		
0x60AE	stop_ctr	2	RW	0	0 = run, 1 = stop counter bit 0 all counter B bit 1 time stamp counter (A)

Bus addressing

0x6100	select_Bus	4	RW	0	015 selects individual buses,
					16 selects all (only write to bus is possible)

Address 0x6110	Parameter			default	
6110	fe_addr_wr	8	RW	0	Set Write subaddress in Frontend
6112	fe_data_wr	16	W		Data write register, starts write . Write needs up to 650ns, independent of 1 or all buses write. buffer FIFO 32 Words
6114	fe_addr_rd	8	W		Read subadress data in Frontend, starts read . Result is written into an output FIFO (delay 2 us); Fifo depth 32 words
6116	Read_Address	8	R		read FIFO: Frontend: {4'h0,bus[3:0],Address [7:0]} Empty FIFO returns 0xFFFF
6118	Read_Data	16	R		read FIFO Frontend Data [15:0], and release next data. Empty FIFO returns 0xFFFF
611A	bus_delay	9	R	50	longest bus in [m], 050 allowed. 50m always works.

Frontend module registers

0x01	reset	0	W	resets front end data
0x03	LEDs_on	1	W	onboard LEDs activated (switch off for light sensitive de- tectors)
0x04	start	1	W	accept trigger, stop also clears buffers
0x05	temp	12		multiples of 0.1 °C
0x06	voltage	12		primary voltage, multiples of 100 mV
0x07	receive_power	12		Amount of received light on optical bus (arbitrary units)
0x08	Pulser_Ampl	8		DACA: pulser amplitude
0x09	com_thr0	8		DACB, trigger threshold, usually lower 32 channels, assigned application specific.
0x0A	com_thr1	8		DACC, trigger threshold, usually higher 32 channels, assigned application specific.
0x0B	aux_thr1	8		DACD, trigger threshold, usually 64 high channels for MMR128, assigned application specific.
0x0C	Pulser_ping	2	00	Usually use central pulser (reg 0x6070), leave this register at default!; default setting b00 = off b00 \rightarrow one pulser ping; b01 \rightarrow one trigger ping; b10 \rightarrow periodic pulser; b11 \rightarrow periodic trigger; Local pulser 1.2kHz;
0x10	data_threshold	12		For all MMR-channels, data below are suppressed
0x21	peak_delay	8		maximum possible delay between trigger and shaper peak Multiples of 10ns
0x22	active_bank	16		Factory setting, do not write. {tp3[3:0],tp2[3:0],tp1[3:0],tp0[3:0]} def: 0x0021 -> lower two banks; 0x8421 \rightarrow all 4 banks
0x23	bus_error	16		bit errors occured on optical bus. Write: reset 0x23, 0x24

0x24	PLL Error	16	Desynchronisation count of PLL;
0x30	Firmware_revision	16	0x0006, 0x0007 Hex notation!
0x31	Hardware Revision	16	0x0014, 0x0015 Hex notation!

Read a register value from MMR connected to optical bus: Request data

0x6100 Bus_Number 0x6114 Register_address 0x6114 Register_address // select the bus number to request data
// select the register number in MMR module

Repeat Register request maximum 25 times, also different buses are possible the request can also be sent to all buses by selecting bus number = 16. This initiates up to 16 registers to be read out. So for an VMMR-16 with all buses occupied it results in reading 16 registers.

Wait at least 1ms

Get data from FIFO (depth max 30 register contents). The requsted data are now in a FIFO:

0x6116 {bus_number[3:0], reg_Address[7:0]} 0x6118 Data[15:0] gets register content data from FIFO, requests next data from FIFO

Write a register value to MMR connected to optical bus:

16 cmds per bus, then wait some us. Bus address 16 "to all" cmds may be sent.

0x6100 Bus_Number[3:0] // to bus 0..15 or to all = 16 0x6110 Register addressing[7:0] 0x6112 Data to write[15:0] and start send

Special Trigger outputs

Starting with March 2021 a new feature is built into all firmware. The VME IRQ lines are mostly unused, but are very good high quality lines to the VME controller. A combination of input triggers can be sent to the 7 available IRQ lines, and can be processed in the Trigger IO of the MVLC controller. A collision of signals with other IRQ signaling of the module should be avoided. Several modules may control the same IRQ line, the outputs are then a wired OR of all participating modules. Pulse length is fixed 50ns.

VME- Addr	Name	Width	Direc- tion	Value	Description
0x6300	Trig to IRQ1	16	RW	0x0000	Connect an OR of the selected bus triggers (up to 16) to IRQ line 1. Example 0b00000000 10000001 means bus 0 and 7 are Ored and sent to IRQ 1
0x6304	Trig to IRQ2	16	RW	0x0000	
0x6308	Trig to IRQ3	16	RW	0x0000	
0x630C	Trig to IRQ4	16	RW	0x0000	
0x6310	Trig to IRQ5	16	RW	0x0000	
0x6314	Trig to IRQ6	16	RW	0x0000	
0x6318	Trig to IRQ7	16	RW	0x0000	
0x631C	Trig_NIM0	16	RW	0x0000	NIM Trigger group 0
0x6320	Trig_NIM1	16	RW	0x0000	NIM Trigger group 1

FAQ:

* Why there are two thresholds ?

If any channel of one MMR gets an amplitude above the **discriminator threshold**, all channels are converted. Then the **data threshold** can be used to cut off noise (zeros) to reduce the amount of transmitted data.

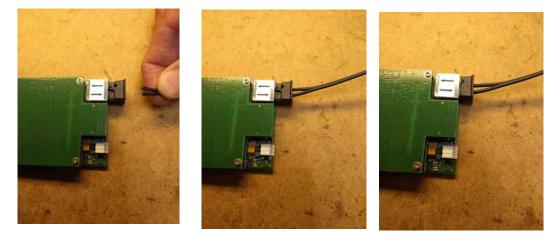
* How to adjust the thresholds.

Usually adjust the threshold up until there are very few triggers per second. * The triggers can be seen at the green LEDs of the VMMR buses.

If the trigger rate has to be higher than can be checked by LED:

* set the trigger output to one bus and check with oscilloscope

* or check the rate of buses in the data acquisition.


For applications which require lowest threshold, some kHz of rate could be acceptable when a coincidence with the window of interest, triggered by an external low rate detector, can be established, or a very fast data acquisition allows readout of the large amount of data.

* How the optical bus is connected:

Connect the Fibers to VMMR module. Make a power cycle to let all optical transceivers get active. At the other end of the fiber pairs you can now see light at one fiber.

Open the locker at MMR transceiver

MMR modulee with opened and closed locker

The fiber with red light has to be at the marked input (input arrow). Insert the fiber pair into the transceiver (23 mm !!) until it hast contact to the internal optical units. Some times with new cables it clamps somewhere inside with its jacket. So check carefully if it can be inserted 23mm. Close the locker to fix the fiber. When the link is established, the red LED on the VMMR-bus should go off.